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Thesis

We are currently seeing the effects of a misguided attempt to apply
1950’s production-line methods to scientific enquiry.

The primary damage is a loss of engagement in the quality of
scientific work.

We should address this by conscious attention to scientific culture,
training for understanding and an emphasis on correct process.

Our goal is not just reproducibility, but a single-minded commitment
on quality.



Plan of the talk

I we probably have an excess of false findings in neuroimaging;
I the academic reward system may be a driver, but we are

unlikely to be able to change that soon;
I business as usual is unlikely to correct this;
I two examples of fields that have increased quality by conscious

intervention to stimulate engagement and refine process;
I stimulating engagement in neuroimaging;
I attention to process in neuroimaging.



The ubiquity of error

The scientific method’s central motivation is the ubiquity
of error - the awareness that mistakes and self-delusion can
creep in absolutely anywhere and that the scientist’s effort
is primarily expended in recognizing and rooting out error.

David L. Donoho et al (2009) “Reproducible research in
computational harmonic analysis” Computing in Science &
Engineering 11 p8-18.



Error in neuroimaging

I have occasionally asked respected colleagues what
percent of published neuroimaging findings they think
would replicate, and the answer is generally very
depressing. My own guess is way less than 50%.

Nancy Kanwisher (2013) commenting on Daniel Bor’s blog post.

http://www.danielbor.com/dilemma-weak-neuroimaging


My straw poll

Let us say you took a random sample of papers using
functional MRI over the last five years. For each study in
the sample, you repeated the same experiment. What
proportion of your repeat experiments would substantially
replicate the main findings of the original paper?

Answers from people running neuroimaging labs vary from 5% to
50%.



Risks for error

Increased risk of false findings for:

1. small sample size (low power);
2. small effect size (low power);
3. large number of tests (analysis bias);
4. greater flexibility in analysis (analysis bias);
5. greater financial interests (analysis bias);
6. larger numbers of groups studying same effects (publication

bias);

John P. A. Ioannidis (2005). “Why most published research findings
are false.” PLoS medicine 2 (8): e124. See also exposition on
Ioannidis 2005.

https://matthew-brett.github.com/teaching/ioannidis_2005.html
https://matthew-brett.github.com/teaching/ioannidis_2005.html


Low power increases false reports

I low power leads to lower probability that alternative is true,
given a significant test statistic;

I effect size and the winner’s curse.



Low power is typical for neuroimaging

In neuroimaging studies of brain volume abnormalities:

Our results indicated that the median statistical power of
these studies was 8% across 461 individual studies
contributing to 41 separate meta-analyses, which were
drawn from eight articles that were published between
2006 and 2009.

Katherine S. Button et al (2013) “Power failure: why small sample
size undermines the reliability of neuroscience”. Nature Reviews
Neuroscience 14, 365-376



Low power and false positives

2.1.5. Corpus Callosum

Corpus callosum is found to be correlated with the ASD.
. . . two successive longitudinal RBV studies . . . have
found persistent reductions in the total corpus callosum
volumes in the autistic subjects compared to the healthy
controls.

Ismail MM et al (2016) “Studying Autism Spectrum Disorder with
Structural and Diffusion Magnetic Resonance Imaging: A Survey.”
Front. Hum. Neurosci.



Corpus callosum and autism with large sample size

Our meta-analysis suggested a group difference in CC size;
however, the studies were heavily underpowered (20%
power to detect Cohen’s d 5 .3). In contrast, we did not
observe significant differences in the Autism Brain Imaging
Data Exchange cohort, despite having achieved 99%
power.

Aline Lefebvre et al (2016) “Neuroanatomical Diversity of Corpus
Callosum and Brain Volume in Autism: Meta-analysis, Analysis of
the Autism Brain Imaging Data Exchange Project, and Simulation”
Biological Psychiatry 78:126–134



Genetic markers and hippocampal volume

. . . previously identified polymorphisms associated with
hippocampal volume showed little association in our
meta-analysis (BDNF, TOMM40, CLU, PICALM,
ZNF804A, COMT, DISC1, NRG1, DTNBP1). . .

Jason Stein et al (2012) “Identification of common variants
associated with human hippocampal and intracranial volumes”. Nat
Genet. 44(5): 552–561.



Publication bias and effect size

Molendijk et al (2012) “A systematic review and meta-analysis on
the association between BDNF val(66)met and hippocampal
volume–a genuine effect or a winners curse?” Am J Med Genet B
Neuropsychiatr Genet 159B(6):731-40



Replication of anatomy-behavior correlations

Wouter Boekel et al (2013). “A purely confirmatory replication
study of structural brain-behavior correlations”. J. Neurosci 12,
4745–65



Analysis flexibility

Joseph P. Simmons et al (2011) “False-Positive Psychology:
Undisclosed Flexibility in Data Collection and Analysis Allows
Presenting Anything as Significant” Psychological Science 22(11)
1359–1366.



Analysis flexibility is characteristic of imaging

Ten analysis steps for which multiple strategies appear in
the literature were identified, and two to four strategies
were enumerated for each step. Considering all possible
combinations of these strategies yielded 6,912 unique
analysis pipelines.

Joshua Carp (2012) “On the plurality of (methodological) worlds:
estimating the analytic flexibility of fMRI experiments” Front.
Neurosci.



This all looks a lot like

I few selected candidate risk factors;
I small sample size;
I “substantial” reporting bias

Ioannidis et al (2011) “The False-positive to False-negative Ratio in
Epidemiologic Studies” Epidemiology 22(4) p450-6



A lack of concern

Computing results are now being presented in a very loose,
“breezy” way—in journal articles, in conferences, and in
books. All too often one simply takes computations at
face value. This is spectacularly against the evidence of
my own experience. I would much rather that at talks and
in referee reports, the possibility of such error were
seriously examined.

David L. Donoho (2010). “An invitation to reproducible
computational research” Biostatistics 11(3) p385-8



Data sharing might lead to refutation

A second concern held by some is that a new class of
research person will emerge — people who had nothing to
do with the design and execution of the study but use
another group’s data for their own ends, possibly stealing
from the research productivity planned by the data
gatherers, or even use the data to try to disprove what the
original investigators had posited.

Dan L. Longo, Jeffrey M. Drazen, editorial (2016) “Data Sharing”
N Engl J Med 374:276-277



Failed replications are uninteresting

Recent hand-wringing over failed replications in social
psychology is largely pointless, because unsuccessful
experiments have no meaningful scientific value.
Because experiments can be undermined by a vast number
of practical mistakes, the likeliest explanation for any
failed replication will always be that the replicator bungled
something along the way . . .
Whether they mean to or not, authors and editors of failed
replications are publicly impugning the scientific integrity
of their colleagues.

Jason Mitchell (2014) “On the emptiness of failed replications”
archived blog post

https://web.archive.org/web/20140708164605/http://wjh.harvard.edu/~jmitchel/writing/failed_science.htm


Cell culture contamination

I 1967 - Stanley Gartler: 18 of 18 human cell lines were HeLa;
I 1975-81 - Walter Nelson-Rees: widespread cross-contamination;
I 2007 - Roland Nardone: “Eradication of cross-contaminated

cell lines: a call for action.”
I 2015 estimate is 20% of cell-lines contaminated;
I 2013 survey - 19% published papers reported cell-line

authentication;

Leonard P. Freedman et al (2015) “Reproducibility: changing the
policies and culture of cell line authentication” Nature Methods
12(6) 493-7.



Cell culture contamination

[scientists show] a general and quite remarkable concern
for truth. Would-be authors are forever going back to
their benches to check small points raised by referees . . .
It would be tragic if these civilized habits were to be
corrupted by the activities of the self-appointed vigilantes.

John Maddox, editorial (1981) “Responsibility for trust in research”
Nature 289 p211-2.



Citations of false findings

Scientists at Amgen (a drug company) tried to reproduce findings
from 53 “landmark” studies.

. . . when findings could not be reproduced, an attempt
was made to contact the original authors, discuss the
discrepant findings, exchange reagents and repeat
experiments under the authors’ direction, occasionally
even in the laboratory of the original investigator.

Of 53 studies, only 6 replicated (11%).

Glenn Begley and Lee Ellis (2012) “Raise standards for preclinical
cancer research” Nature 483



Citations of false findings

the best scientists working in optimal  
conditions to make a discovery that will ulti-
mately have an impact in the clinic. Issues 
related to clinical-trial design — such as 
uncontrolled phase II studies, a reliance 
on standard criteria for evaluating tumour 
response and the challenges of selecting 
patients prospectively — also play a signifi-
cant part in the dismal success rate3. 

Unquestionably, a significant contribu-
tor to failure in oncology trials is the qual-
ity of published preclinical data. Drug 
development relies heavily on the literature, 
especially with regards to new targets and 
biology. Moreover, clinical endpoints in can-
cer are defined mainly in terms of patient 
survival, rather than by the intermediate 
endpoints seen in other disciplines (for 
example, cholesterol levels for statins). Thus, 
it takes many years before the clinical appli-
cability of initial preclinical observations 
is known. The results of preclinical studies 
must therefore be very robust to withstand 
the rigours and challenges of clinical trials, 
stemming from the heterogeneity of both 
tumours and patients.

CONFIRMING RESEARCH FINDINGS
The scientific community assumes that the 
claims in a preclinical study can be taken at 
face value — that although there might be 
some errors in detail, the main message of the 
paper can be relied on and the data will, for 
the most part, stand the test of time. Unfor-
tunately, this is not always the case. Although 
the issue of irreproducible data has been 
discussed between scientists for decades, it 
has recently received greater attention (see 
go.nature.com/q7i2up) as the costs of drug 
development have increased along with the 
number of late-stage clinical-trial failures and 
the demand for more effective therapies. 

Over the past decade, before pursu-
ing a particular line of research, scientists 
(including C.G.B.) in the haematology and 
oncology department at the biotechnology 
firm Amgen in Thousand Oaks, Califor-
nia, tried to confirm published findings 
related to that work. Fifty-three papers were 
deemed ‘landmark’ studies (see ‘Repro-
ducibility of research findings’). It was 
acknowledged from the outset that some of 
the data might not hold up, because papers 
were deliberately selected that described 
something completely new, such as fresh 
approaches to targeting cancers or alterna-
tive clinical uses for existing therapeutics. 
Nevertheless, scientific findings were con-
firmed in only 6 (11%) cases. Even knowing 
the limitations of preclinical research, this 
was a shocking result. 

Of course, the validation attempts may 
have failed because of technical differences 
or difficulties, despite efforts to ensure that 
this was not the case. Additional models 
were also used in the validation, because 

to drive a drug-development programme 
it is essential that findings are sufficiently 
robust and applicable beyond the one nar-
row experimental model that may have 
been enough for publication. To address 
these concerns, when findings could not be 
reproduced, an attempt was made to contact 

the original authors, 
discuss the discrep-
ant findings, exchange 
reagents and repeat 
experiments under 
the authors’ direction, 
occasionally even in 
the laboratory of the 
original investigator. 
These investigators 

were all competent, well-meaning scientists 
who truly wanted to make advances in can-
cer research. 

In studies for which findings could be 
reproduced, authors had paid close attention 
to controls, reagents, investigator bias and 
describing the complete data set. For results 
that could not be reproduced, however, data 
were not routinely analysed by investigators 
blinded to the experimental versus control 
groups. Investigators frequently presented 
the results of one experiment, such as a sin-
gle Western-blot analysis. They sometimes 
said they presented specific experiments that 
supported their underlying hypothesis, but 
that were not reflective of the entire data set. 
There are no guidelines that require all data 
sets to be reported in a paper; often, original 
data are removed during the peer review and 
publication process. 

Unfortunately, Amgen’s findings are con-
sistent with those of others in industry. A 
team at Bayer HealthCare in Germany last 
year reported4 that only about 25% of pub-
lished preclinical studies could be validated 
to the point at which projects could con-
tinue. Notably, published cancer research 
represented 70% of the studies analysed in 
that report, some of which might overlap 
with the 53 papers examined at Amgen. 

Some non-reproducible preclinical papers 
had spawned an entire field, with hundreds 
of secondary publications that expanded on 
elements of the original observation, but 
did not actually seek to confirm or falsify its 
fundamental basis. More troubling, some of 
the research has triggered a series of clinical 
studies — suggesting that many patients had 

subjected themselves to a trial of a regimen 
or agent that probably wouldn’t work.

These results, although disturbing, do not 
mean that the entire system is flawed. There 
are many examples of outstanding research 
that has been rapidly and reliably translated 
into clinical benefit. In 2011, several new 
cancer drugs were approved, built on robust 
preclinical data. However, the inability of 
industry and clinical trials to validate results 
from the majority of publications on poten-
tial therapeutic targets suggests a general, 
systemic problem. On speaking with many 
investigators in academia and industry, we 
found widespread recognition of this issue. 

IMPROVING THE PRECLINICAL ENVIRONMENT
How can the robustness of published pre-
clinical cancer research be increased? Clearly 
there are fundamental problems in both aca-
demia and industry in the way such research 
is conducted and reported. Addressing these 
systemic issues will require tremendous 
commitment and a desire to change the 
prevalent culture. Perhaps the most crucial 
element for change is to acknowledge that 
the bar for reproducibility in performing and 
presenting preclinical studies must be raised.

An enduring challenge in cancer-drug 
development lies in the erroneous use and 
misinterpretation of preclinical data from 
cell lines and animal models. The limita-
tions of preclinical cancer models have been 
widely reviewed and are largely acknowl-
edged by the field. They include the use 
of small numbers of poorly characterized 
tumour cell lines that inadequately recapitu-
late human disease, an inability to capture 
the human tumour environment, a poor 
appreciation of pharmacokinetics and phar-
macodynamics, and the use of problematic 
endpoints and testing strategies. In addition, 
preclinical testing rarely includes predictive 
biomarkers that, when advanced to clinical 
trials, will help to distinguish those patients 
who are likely to benefit from a drug. 

Wide recognition of the limitations in 
preclinical cancer studies means that busi-
ness as usual is no longer an option. Can-
cer researchers must be more rigorous in 
their approach to preclinical studies. Given 
the inherent difficulties of mimicking the 
human micro-environment in preclini-
cal research, reviewers and editors should 
demand greater thoroughness. 

REPRODUCIBILITY OF RESEARCH FINDINGS 
Preclinical research generates many secondary publications, even when results cannot be reproduced.

Journal 
impact factor

Number of 
articles

Mean number of citations of 
non-reproduced articles*

Mean number of citations of 
reproduced articles

>20 21 248 (range 3–800) 231 (range 82–519)

5–19 32 169 (range 6–1,909) 13 (range 3–24)

Results from ten-year retrospective analysis of experiments performed prospectively. The term ‘non-reproduced’ was 
assigned on the basis of findings not being sufficiently robust to drive a drug-development programme.  
*Source of citations: Google Scholar, May 2011.

“The scientific 
process 
demands 
the highest 
standards of 
quality, ethics 
and rigour.”

5 3 2  |  N A T U R E  |  V O L  4 8 3  |  2 9  M A R C H  2 0 1 2

COMMENT

© 2012 Macmillan Publishers Limited. All rights reserved
Glenn Begley and Lee Ellis (2012) “Raise standards for preclinical
cancer research” Nature 483



How did this happen?

.. compared to non-rewarded subjects, subjects offered a
task-extrinsic incentive choose easier tasks, are less
efficient in using the information available to solve novel
problems, and tend to be answer oriented and more
illogical in their problem-solving strategies. They seem to
work harder and produce more activity, but the activity is
of lower quality, contains more errors, and is more
stereotyped and less creative than the work of comparable
nonrewarded subjects working on the same problems"

J Condry (1977) Journal of Personality and Social Psychology
(quoted in “Punished by rewards” by Alfie Kohn).

See also: Edward L. Deci et al (1999). A meta-analytic review of
experiments examining the effects of extrinsic rewards on intrinsic
motivation. Psychological bulletin, 125(6), 627.



What can we do?

Among all the relevant stakeholders, concerns about the
culture of research are often on matters that they think are
outside their control or are someone else’s responsibility"

Nuffield Council on Bioethics (2014) “The culture of scientific
research in the UK”



What can we do?

Two fields where conscious intervention was effective in increasing
output quality:

I car manufacture.
I software projects;

Note emphasis on:

I engagement;
I process.



Toyota and General Motors

Susan Helper, Rebecca Henderson (2014) “Management Practices,
Relational Contracts and the Decline of General Motors”. Harvard
Business School Working Paper 14-062



Toyota and General Motors

Susan Helper, Rebecca Henderson (2014)



Culture at General Motors

General Motors was a kind of throw it over the wall
organization. Each department, we were very
compartmentalized, and you design that vehicle, and you’d
throw it over the wall to the manufacturing guys.

Ernie Schaefer, GM manager, interviewed in “NUMMI”; This
American Life episode 403 (2010).

https://www.thisamericanlife.org/radio-archives/episode/403/transcript
https://www.thisamericanlife.org/radio-archives/episode/403/transcript


Culture at Toyota

14 principles in four sections:

1. Long-term Philosophy;
2. The Right Process Will Produce the Right Results;
3. Add Value to the Organization by Developing Your People;
4. Continuously Solving Root Problems Drives Organizational

Learning



The Toyota Way - process

2. The Right Process Will Produce the Right Results;
2.5 Build a culture of stopping to fix problems, to get quality right

the first time. Quality takes precedence (Jidoka).
2.6 Standardized tasks and processes are the foundation for

continuous improvement and employee empowerment.
2.7 Use visual control so no problems are hidden.



The Toyota Way - developing people

3. Add Value to the Organization by Developing Your People;
3.9 Grow leaders who thoroughly understand the work, live the

philosophy, and teach it to others.
3.10 Develop exceptional people and teams who follow your

company’s philosophy.



The Toyota Way - solving root problems

4. Continuously Solving Root Problems Drives Organizational
Learning
4.12 Go and see for yourself to thoroughly understand the situation

(Genchi Genbutsu).



Software quality

From the Standish CHAOS report 1994-2012.

https://www.standishgroup.com


Code as personal property

In the early years of programming, a program was
regarded as the private property of the programmer. One
would no more think of reading a colleague’s program
unbidden than of picking up a love letter and reading it.
This is essentially what a program was, a love letter from
the programmer to the hardware, full of the intimate
details known only to partners in an affair. Consequently,
programs became larded with the pet names and verbal
shorthand so popular with lovers who live in the blissful
abstraction that assumes that theirs is the only existence
in the universe. Such programs are unintelligible to those
outside the partnership.

Attributed to Michael Marcotty, quoted in Steve McConnell (2004)
“Code Complete, second edition” p 842. Microsoft Press.



Developer responsibility

.. in my office is a big poster that says “Nothing at
Facebook is someone else’s problem”, and the remarkable
thing about Facebook as an engineering organization is
the degree to which 7000 people all actually agree on that
. . . the transition back in the dark ages wasn’t from a
healthy relationship [with quality assurance teams], it was
from this very dysfunctional, aresponsibile attitude, throw
it over the wall, long long cycles, vague feedback. Going
from that, to programmers accepting responsibility for the
quality of their work, that was a huge step forward.

Kent Beck (2014) discussing test-first development.

http://martinfowler.com/articles/is-tdd-dead


Modern process is more effective

Agile Waterfall

Successful 42% 14%
Challenged 49% 57%
Failed 9% 29%

Standish group (2011) “CHAOS report”, summary

https://www.mountaingoatsoftware.com/blog/agile-succeeds-three-times-more-often-than-waterfall


Barriers to engagement

I unfamiliarity with ideas and tools;
I “makes sense epistemology”;
I “garbage in, gospel out”;
I black box software and pipelines;



Removing barriers to engagement

I understanding one level down;
I a landscape of concepts;
I commitment to teaching on math;
I prove everything you reasonably can;
I teaching with code;
I opening the black box.



Opening the black box

The tools we use have a profound (and devious!) influence
on our thinking habits, and, therefore, on our thinking
abilities."

Edsger W. Dijkstra “How do we tell truths that might hurt?” link

http://www.cs.virginia.edu/~evans/cs655/readings/ewd498.html


Opening the black box

“What I cannot create, I do not understand”

Found on Richard Feynman’s blackboard after his death.



Math etc curriculum

I Floating point calculations;
I Fourier transform;
I Matrix multiplication and linear algebra;
I Principal Component Analysis;
I Optimization;
I Interpolation;
I Convolution;
I Multiple regression;
I Multiple comparison correction.



Improving process

In studies for which findings could be reproduced, authors
had paid close attention to controls, reagents, investigator
bias and describing the complete data set. For results that
could not be reproduced, however, data were not routinely
analysed by investigators blinded to the experimental
versus control groups. Investigators frequently presented
the results of one experiment, such as a single
Western-blot analysis. They sometimes said they
presented specific experiments that supported their
underlying hypothesis, but that were not reflective of the
entire data set.

Begley and Ellis (2012).



Process etc curriculum

I version control;
I automation;
I testing;
I documentation;
I code re-use;
I code review.

Wilson et al (2014) “Best practices for scientific computing” PLoS
Biology doi

http://dx.doi.org/10.1371/journal.pbio.1001745


Our teaching

I by analogy with math teaching;
I start and continue with “best practice”;
I Practical neuroimaging class;
I Reproducible computational and statistical data science;
I functional MRI methods class

I syllabus

https://practical-neuroimaging.github.com
http://www.jarrodmillman.com/rcsds
https://bic-berkeley.github.io/psych-214-fall-2016
https://bic-berkeley.github.io/psych-214-fall-2016/syllabus.html


Is “practical neuroimaging” practical?

I three 4-unit courses?
I or coding and math integrated into other courses



The end

Thanks to JB Poline, Jarrod Millman, Stefan van der Walt, Paul
Ivanov and all the Nipy developers.



The NiPy community

The purpose of NIPY is to make it easier to do better
brain imaging research. We believe that neuroscience ideas
and analysis ideas develop together. Good ideas come
from understanding; understanding comes from clarity,
and clarity must come from well-designed teaching
materials and well-designed software. The software must
be designed as a natural extension of the underlying ideas.
We aim to build software that is: clearly written; clearly
explained; a good fit for the underlying ideas; a natural
home for collaboration

Nipy “Mission statement”

http://nipy.org/nipy/mission.html


Tools are a continuation of teaching

I build your own lightsaber.
I transparent (open source, readable language);
I shared (open development, open governance);
I modular and composable;
I tested;
I eulerangles.py
I nibabel

https://github.com/nipy/nibabel/blob/master/nibabel/eulerangles.py
https://github.com/nipy/nibabel

